Data Mining

Master’s Thesis

by

Edward A. D’Costa

Submitted in Partial Fulfillment for the Degree of

Master of Science in Information Systems

at

ANSAL INSTITUTE OF TECHNOLOGY

Gurgaon, India

Thesis Supervisor

Prof. Ashay Dharwadker

16th July, 2004

Data Mining

Master’s Thesis

by

Edward A. D’Costa

Thesis Supervisor

Prof. Ashay Dharwadker

Abstract

This thesis is a survey of Data Mining techniques with an emphasis on Time Series analysis. A brief history of the development of the field and its extreme usefulness in today’s world of large databases is discussed. The architecture of a typical data mining system is studied with examples and applications. The Data Mining Query Language (DMQL), Time series, Seasonal Variations, and the Exponentially Smoothed Weighted Moving Average (ESWMA) are studied in detail, with examples. We have implemented the ESWMA-based Trend Curve fitter application in C++ and, on the accompanying CD, provide the source code of the software under the ‘for non-commercial use’ GNU General Public License (GPL). Other information, seminars and research notes that lead up to and supplement this thesis may be viewed online at http://members.lycos.co.uk/dharwadker/student.php?student_id=3.

CERTIFICATE
This is to certify that the thesis titled “Data Mining”, made by Edward A. D’Costa of Master of Science (Information Systems) studying at Ansal Institute of Technology, Gurgaon, is original and authentic. It has been carried under my supervision and guidance.

 Ashay Dharwadker

Prof. Ashay Dharwadker

Ansal Institute of Technology

16th July, 2004

ACKNOWLEDGEMENT
My thesis work is an outcome of inspiration, assistance and guidance of my parents, mentors, teachers, professionals, and the administrative staff at the institute.

First and foremost, I am grateful to my thesis supervisor, Prof. Ashay Dharwadker, for his absolutely invaluable and continuous guidance during the creation of my project. My other professors, too, provided me valuable tips, and considerable help in every which way possible.

Prof. M. P. Singh, Director, Ansal Institute of Technology, Dr. H. S. Saxena and Dr. A. K. Yadav, have been great sources of inspiration and encouragement. They have created an outstanding infrastructure and academic environment in the institute.

Further, I would like to take this opportunity to express my gratitude for the staff of the library and computer laboratory at Ansal Institute of Technology for the excellent support provided to me.

I am thankful to all my co-students for inspiring each other along the way, and for the help extended to me.

Last, but not the least, I would like to thank my parents for their constant support and words of encouragement at every step of the way.

Contents

 Page No.

1. Introduction

8

2. What is Data Mining?

9
3. History of Data Mining

11
4. Some other terms for Data Mining

12
5. From ‘Data’ to ‘Knowledge Discovery’

14
6. Architecture of a Typical Data Mining System

16

7. Is it Really Data Mining?...

18

8. Functions of Data Mining

19

9. Real-life Applications of Data Mining

20

9.1 An Example of a Data Mining Business Software at Eddie Bauer
20

9.2 Other Examples

22

10. Data Mining Query Language (DMQL)

24

10.1 Data Cubes for DMQL

24

10.2 DMQL

31

11. Data Mining – On What Kind of Data?

32

11.1 Theoretical Concepts Involved

32

12. Time Series

33

12.1 What is Trend Measurement?

33

12.2 Method of Moving Averages (MA) to Determine Trend

33

12.3 Criteria for the selection of Period for the Moving Average

34

13. Components of Time Series

35

14. Seasonal Variations

39

14.1 Measurement of Seasonal Variations

40

14.2 Uses of Seasonal Index

41

14.3 Ratio-to-Moving Average method of measuring Seasonal

Variations

42

15. Exponentially Smoothed Weighted Moving Average (ESWMA)

43

15.1 Implementation into Software Application

45

15.2 Manual for ESWMA-based Trend Curve fitter application

46

15.3 Proposed Improvements in Current Version

of ESWMA–based Trend Curve fitter Application

47

16. Conclusion

48

17. References

49

18. Appendix A

51

19. Appendix B

58

20. Appendix C

61

Introduction
Databases today can range in size into the terabytes — more than 1,000,000,000,000 bytes of data. Within these masses of data lies hidden information of strategic importance. But when there are so many trees, how do you draw meaningful conclusions about the forest?

The newest answer is data mining, which is being used both to increase revenues (through improved marketing) and to reduce costs (through detecting and preventing waste and fraud). Worldwide, organizations of all types are achieving measurable payoffs from this technology.

What is Data Mining?

Data mining refers to extracting or ‘mining’ interesting knowledge from large amounts of data.1 It provides a means of extracting previously unknown, predictive infor​mation from the base of accessible data in data warehouses. Data mining tools use sophisticated, automated algorithms to discover hidden patterns, correlations, and relationships among organizational data. These tools are used to predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions.2
For example, one typical predictive problem is targeted marketing.11 Data mining can use data on past promotional-mailings to identify the targets most likely to maxi​mize the return on the company's investment in future mailings. Other predictive problems include forecasting bankruptcy and other forms of default. An example of pattern discovery is the analysis of retail sales data to identify seemingly unrelated products that are often purchased together, such as milk and greeting cards at a supermarket. Another pattern discovery problem is detecting fraudulent credit card transactions.

[image: image1]
History of Data Mining

Since the 1960s (refer figure 1), database and information technology has been evolving systematically from primitive file processing systems to sophisticated and powerful database systems.10 The research and development in database systems since the 1970s as progressed from early hierarchical and network database systems to the development of relational database systems (where data are stored in relational table structures), data modeling tools, and indexing and data organization techniques. In addition, users gained convenient and flexible data access through query languages, user interfaces, optimized query processing, and transaction management. Efficient methods for online transaction processing (OLTP), where a query is viewed as a read-only transaction, have contributed substantially to the evolution and wide acceptance of relational technology as a major tool for efficient storage, retrieval, and management of large amounts of data.

Database technology since the mid-1980s has been characterized by the popular adoption of relational technology and an upsurge of research and development activities on new and powerful database systems. These employ advanced data models such as extended-relational, object-oriented, object-relational, and deductive models. Application-oriented database systems, including spatial, temporal, multimedia, active, and scientific databases, knowledge bases, and office information bases, have flourished. Issues related to the distribution, diversification, and sharing of data have been studied extensively. Heterogeneous database systems and internet-based global information systems such as the World Wide Web (WWW) have also emerged and play a vital role in the information industry.

The steady and amazing progress of computer hardware technology in the past three decades has led to large supplies of powerful and affordable computers, data collection equipment, and storage media. This technology provides a great boost to the database and information industry, and makes a huge number of databases and information repositories available for transaction management, information retrieval, and data analysis.

Data can now be stored in many different types of databases. One database architecture that has recently emerged is the data warehouse, a repository of multiple heterogeneous data sources, organized under a unified schema at a single site in order to facilitate management decision making. Data warehouse technology includes data cleansing, data integration, and On-Line Analytical Processing (OLAP), that is, analysis techniques with functionalities such as summarization, consolidation, and aggregation, as well as the ability to view information from different angles. Although OLAP tools support multidimensional analysis and decision making, additional data analysis tools are required for in-depth analysis, such as data classification, clustering, and the characterization of data changes over time.

Some other terms…
· knowledge mining from databases, or

· knowledge extraction, or

· data/pattern analysis, or

· data archaeology, or

· data dredging, or

· Knowledge Discovery in Databases (KDD).3
[image: image2.jpg]]
]
“
1
e\ = “
-->» =& 5 “
........................... £= £ |
_ o = < |
| =5 A |
_ 1
" - .
| nMP €---------mm - - i
| "
1 g _
i .m |
] - _
i & |
e > _
b e > 3 |
lllllllllll -
" €------------ “
_ 1
i o |
1 e _
1 o _
_]
1 _ u) _
| £ s S .
_ <SS o) M _
| s £ a = b _
_ = = 1
2 0% W !
_lll kn _
“ 2E |
" g e . |
1
i
]
_ @n
i - m
] ao b
| - -
| > Mbm 8
|||||||||| g5 Z
e £ a
Do i i oy) i i ey g
=5
Q

Figure 2. Knowledge discovery as a process.
The Journey from ‘data’ to ‘knowledge discovery’…

Knowledge discovery as a process is depicted in figure 2, and consists of an iterative sequence of the following steps:23
1. Data cleaning (to remove noise and inconsistent data);

2. Data integration (where multiple data sources may be combined);

3. Data selection (where data relevant to the analysis task are retrieved from the database);

4. Data transformation (where data are transformed or consolidated into forms appropriate for mining by performing summary or aggregation operations, for instance);

5. Data mining (an essential process where intelligent methods are applied in order to extract data patterns);

6. Pattern evaluation (to identify the truly interesting patterns representing knowledge based on some interestingness measures); and

7. Knowledge presentation (where visualization and knowledge representation techniques are used to present the mined knowledge to the user).

The data mining step may interact with the user or a knowledge base. The interesting patterns are presented to the user, and may be stored as new knowledge in the knowledge base. Note that according to this view, data mining is only one step in the entire process, albeit an essential one since it uncovers hidden patterns for evaluation.

We agree that data mining is a step in the knowledge discovery process. However, in industry, in media, and in the database research milieu, the term data mining is becoming more popular than the longer term of knowledge discovery in databases. Therefore, as per the broad view of data mining functionality: data mining is the process of discovering interesting knowledge from large amounts of data stored either in databases, data warehouses, or other information repositories.

[image: image3]

Architecture of a Typical Data Mining System

The architecture of a typical data mining system may have the following major components (refer figure 3):22, 10
· Database, data warehouse, or other information repository: This is one or a set of databases, data warehouses, spreadsheets, or other kinds of information repositories. Data cleaning and data integration techniques may be performed on the data.

· Database or data warehouse server: The database or data warehouse server is responsible for fetching the relevant data, based on the user’s data mining request.

· Knowledge base: This is the domain knowledge that is used to guide the search, or evaluate the interestingness of resulting patterns. Such knowledge can include concept hierarchies, used to organize attributes or attribute values into different levels of abstraction. Knowledge such as user beliefs, which can be used to assess a pattern’s interestingness based on its unexpectedness, may also be included. Other examples of domain knowledge are additional interestingness constraints or thresholds, and metadata (e.g., describing data from multiple heterogeneous sources).

· Data mining engine: This is essential to the data mining system and ideally consists of a set of functional modules for tasks such as characterization, association, classification, cluster analysis, and evolution and deviation analysis.

· Pattern evaluation module: This component typically employs interestingness measures and interacts with the data mining modules so as to focus the search towards interesting patterns. It may use interestingness thresholds to filter out discovered patterns. Alternatively, the pattern evaluation module may be integrated with the mining module, depending on the implementation of the data mining method used. For efficient data mining, it is highly recommended to push the evaluation of pattern interestingness as deep as possible into the mining process so as to confine the search to only the interesting patterns.

· Graphical user interface: This module communicates between users and the data mining system, allowing the user to interact with the system by specifying a data mining query or task, providing information to help focus the search, and performing exploratory data mining based on the intermediate data mining results. In addition, this component allows the user to browse database and data warehouse schemas or data structures, evaluate mined patterns, and visualize the patterns in different forms.

Is it Really Data Mining?...

From a data warehouse perspective, data mining can be viewed as an advanced stage of on-line analytical processing (OLAP). However, data mining goes far beyond the narrow scope of summarization-style analytical processing of data warehouse systems by incorporating more advanced techniques for data understanding.17
While there may be many “data mining systems” on the market, not all of them can perform true data mining. A data analysis system that does not handle large amounts of data should be more appropriately categorized as a machine learning system, a statistical data analysis tool, or an experimental system prototype. A system that can only perform data or information retrieval, including finding aggregate values, or that performs deductive query answering in large databases should be more appropriately categorized as a database system, an information retrieval system, or a deductive database system.

Data mining involves an integration of techniques from multiple disciplines such as database technology, statistics, machine learning, high-performance computing, pattern recognition, neural networks, data visualization, information retrieval, image and signal processing, and spatial data analysis.

Most of the data mining work going on today lays emphasis on efficient and scalable data mining techniques for large databases. For an algorithm to be scalable, its running time should grow linearly in proportion to the size of the database, given the available system resources such as main memory and disk space. By performing data mining, interesting knowledge, regularities, or high-level information can be extracted from databases and viewed or browsed from different angles. The discovered knowledge can be applied to decision making, process control, information management, and query processing. Therefore, data mining is considered one of the most important frontiers in database systems and one of the most promising interdisciplinary developments in the information industry.

Functions of Data Mining

Data mining identifies facts or suggests conclusions based on sifting through the data to discover either patterns or anomalies. Data mining has five main functions:8, 10
· Classification: infers the defining characteristics of a certain group (such as cus​tomers who have been lost to competitors).

· Clustering: identifies groups of items that share a particular characteristic. (Clus​tering differs from classification in that no predefining characteristic is given in clas​sification.)

· Association: identifies relationships between events that occur at one time (such as the contents of a shopping basket).

· Sequencing: similar to association, except that the relationship exists over a period of time (such as repeat visits to a supermarket or use of a financial planning product).

· Forecasting: estimates future values based on patterns within large sets of data (such as demand forecasting).

Real-life Applications of Data Mining

The applications for data mining are wide-ranging. They include customer relationships (that is, customer retention); cross-selling and up-selling; campaign management; market, channel, and pricing analysis; and customer segmen​tation analysis.

An Example of Business Software at Eddie Bauer using Data Mining applications9, 15
A division of the Spiegel Group, apparel retailer Eddie Bauer has more than 500 stores in 49 states of the United States. Bauer publishes 44 catalogs annually with a circulation of 105 million in the US and Canada. The company is trying to build one-to-one relationships with more than 15 million retail, catalog, and Internet customers.

An average customer might have placed 20 orders in the last five years, with four items per order. Now, add to those 15 million buying histories what you know about the customer: name, age, and address, for example. The result is several terabytes of raw data – and a problem. Before implementing its data mining and data warehousing projects, the company had data in different places. So, managers decided it was time to implement data mining and data warehousing projects that could consolidate that disparate data and make them available to everyone in the company who needed them.

The company realized that it should operate from a customer-centric point of view rather than a channel-centric point of view. To do so, Bauer had to rethink the metrics it used to gauge its success and used data mining of the firm's data warehouse to determine what these metrics need to be. Metrics such as comparing annual sales figures began to give way to customer-relationship-oriented mea​sures such as determining a customer's current value (e.g., likelihood to buy, type and quantity of product likely to buy, amount of money likely to spend, satisfaction with Bauer) and projecting his or her lifetime value.

Data mining for customer relationship management gives Eddie Bauer effective ways of analyzing customer behavior, together with the power to make projections based on that customer information. Data mining typi​cally relates to direct-mail campaigns at Eddie Bauer​ both within the catalog and retail sectors. Increasingly, such activities also focus on the Internet.

Bauer uses predictive modeling to decide who re​ceives specialized mailings and catalogs. For example, each year Eddie Bauer features an outerwear special, and, thanks to data mining, the company can determine which customers are most likely to buy. Data mining also allows Bauer to determine seasonal buying habits. Then the company can identify people with similar character​istics and target them with mailings to bring them into the store or encourage them to buy from the catalog.

Customer loyalty is critical to Bauer, and its data mining has made tracking and maintaining the customer base easier and more efficient. Data mining helps Bauer find pieces of information that are not just common sense, but further use them to retain customers more effectively.

Examples Highlighting the Significance of Data Mining applications in a Variety of Other Areas12
The National Basketball Association.
A data mining application, Advanced Scout, is proving very useful for NBA coaches. Coaches, like business executives, carefully study data to enhance their natural intuition when making strategic decisions. By helping coaches make better decisions, data mining applications are playing a huge role in boosting fan support and loyalty. That means millions of dollars in gate traffic, television sales, and licensing.

Before these data mining applications, the sheer volume of statistics was over​whelming, with as many as 200 possessions a game and about 1,200 games a year. Previous applications produced only basic results – the kind of statistics anyone could find in a local newspaper.

Using the data mining software, coaches can drill down into the statistics and data and unearth comprehensible patterns that were previously hidden among seemingly unrelated statistics. Coaches are able to obtain, in real time, statistical evaluations that allow them to put in the very best players for specific points in the game. Coaches can also, in real time, ask the application which play will be the most effective relative to the time elapsed and the specific combinations of players on the court. Data mining, simply put, helps coaches make more effective decisions.
Selecting branch locations.
The Dallas Teachers Credit Union (DTCU) decided to become a full-fledged community bank, but did not know where to build branches. DTCU used data mining software to comb through demographic and customer data. One target was people who might open checking accounts, because bankers consider such accounts a way to make “cheap money”. DTCU found that if a branch was within a 10-minute drive, customers had a checking account. But if the branch was a 10.5 minute drive, they did not have a checking account. Consequently, when DTCU opened a branch in north Dallas within a 10-minute drive for a large number of poten​tial customers, it became profitable in 90 days. Normally, a branch takes a year to climb into the black. DTCU now uses data mining to select all branch locations.
Data Mining Query Language (DMQL)

Data Cubes for Data Mining Query Language (DMQL)6, 10
“What is a data cube?” A data cube allows data to be modeled and viewed in multiple dimensions. It is defined by dimensions and facts.

In general terms, dimensions are the perspectives or entities with respect to which an organization wants to keep records. For example, a retail chain organization, AllElectronics, selling electronics goods (such as home entertainment gadgets, computers, phones, and electronic security items) may create a sales data warehouse in order to keep records of the store’s sales with respect to the dimensions time, item, location, and supplier. These dimensions allow the store to keep track of things like monthly sales of items, and the locations at which the items were sold. Each dimension may have a table associated with it, called a dimension table, which further describes the dimension. For example, a dimension table for item may contain the attributes item_name, brand, and type. Dimension tables can be specified by users or experts, or automatically generated and adjusted based on data distributions.

A multidimensional data model is typically organized around a central theme, like sales, for instance. This theme is represented by a fact table. Facts are numerical measures. One can think of them as the quantities by which we want to analyze relationships between dimensions. Examples of facts for a sales data warehouse include dollars_sold (sales amount in dollars), units_sold (number of units sold), and amount_budgeted. The fact table contains the names of the facts, or measures, as well as keys to each of the related dimension tables.

[image: image4.jpg]Toration = "Chicago™ Tocation = “Tiew Vork" Toration = Vancouwer”
item item itom

time "9 camp phone sec. "OM° comp. phone seo "OMC comp. phone see. UM comp. phone sec

G1 s 92 s 65 fosr ws 5 672 o6 Te5 43 591 s a2 14 400

943 Bsn o4 be 130 1024 1 825 gse 7S 52 go2 ban ss2 31 812

G5 1052 s24 59 783 103 1045 45 1002 940 795 S5 72 G2 1023 30 501

Q4 1129 992 63 870 1142 1091 s oae o97a Gee 5o 7 sor om0 sa0

dimensions time, item, and location. Measure displayed is dollars_sold (in thousands)

time (quarters)

Table L: 3-D view of sales data for AN Blectromics, according to the dimensions fime, item,

and Iocation. Measure displaed is dollars_sold (in thousands)

)
&

Vancouver,

Chicago

Q1| o5 825 14 400
Q| 6 952 31 512
Q3| sz 1023 | 30 501
Q4| 9 w38 | 38 580
¥ secuity
phone
computer
home,
entertainment

item (typ

)

Figure 4: 3-D data cube representation of the datain table 1, according to the

Although one usually thinks of cubes as 3-D geometric structures, in data warehousing the data cube is n-dimensional. To gain a better understanding of data cubes and the multidimensional data model, one needs to start by looking at a simple 3-D data cube that is, in fact, a table or spreadsheet for sales data from AllElectronics. In this 3-D representation, the sales data are viewed according to the 3 dimensions of time (organized in quarters – Q1, Q2, Q3, Q4), item (organized according to the type of items sold – home entertainment, computer, phone, security), as well as location (organized as per the cities where sales have been made – Chicago, New York, Toronto, Vancouver). These 3-D data are shown in table 1. The fact or measure displayed is dollars_sold (in thousands). Conceptually, one may also represent the same data in the form of a 3-D data cube, as in figure 4.

[image: image5.jpg]UMDYS 3TE SANEA 3GNI 3T} 0 IwW0S £[U0 IIgepeal pasoidurl oy (SpuRsnoy) pros saojop st pakeldsp ainses i
aBiddns PR ‘UoYI] ‘we ‘our SUD SUATD AT 0} BUIpI0I%e IR SAS J0 UOUEIUSsaIdal aqNI BRY (b 'S BN

(s0 diy) wyr (s0d4y) won (s0dK)) woyr
uaunE s JusumELBm R
amoy amoy amoy
sapnduos Pandwod sanduos

sugyd é suoyd @ suoyd é
fumas A Suroas A funoss A
o m
€0
oy
0 m
o [iz o fo &

Banonuey

.£dns§.. = wyddus .2dng.. = wddns .1dn§. = Brddns

Suppose that we would now like to view our sales data with an additional fourth dimension, such as supplier. Viewing things in 4-D becomes tricky. However, one can think of a 4-D cube as being a series of 3-D cubes, as shown in figure 5. If one continues in this way, one may display any n-D data as a series of (n – 1)-D “cubes”. The data cube is a metaphor for multidimensional data storage. The actual physical storage of such data may differ from its logical representation. The important thing to remember is that data cubes are n-dimensional and do not confine data to 3-D.

[image: image6.jpg]30 aaiBap Juasagyip e progno geg
aatiddns P ‘uoyPIG] ‘wer ‘ous STORUAUP 311 30 400 B1ep -p® 4 BUBEM ‘SPI0GNaJ0 S9N 10 amBLY

pogm (@seq) q- JarEdns ‘GonEao] ‘was ‘awy

s 7 ; ‘u wonEo0] “war ‘s

sproamwy a- ; Twway ‘aw

worpao] ‘way
sproquy q¢

sproquy @7

Proquo (sad

Figure 6 shows the data at different degrees of summarization. In the data warehousing research literature, a data cube such as each of those in figures 4 and 5 is referred to as a cuboid. Given a set of dimensions, one can construct a lattice of cuboids, each showing the data at a different level of summarization, or ‘group by’ (i.e., summarized by a different subset of the dimensions). The lattice of cuboids is then referred to as a data cube. Figure 6 shows a lattice of cuboids forming a data cube for the dimensions time, item, location, and supplier.

The cuboid that holds the lowest level of summarization is called the base cuboid. For example, the 4-D cuboid in Figure 5 is the base cuboid for the given time, item, location, and supplier dimensions. Figure 4 is a 3-D (non-base) cuboid for time, item, and location, summarized for all suppliers. The 0- D cuboid, which holds the highest level of summarization, is called the apex cuboid. In the AllElectronics example, this is the total sales, or dollars_sold, summarized over all four dimensions. The apex cuboid is typically denoted by all.

Data Mining Query Language (DMQL)21
Just as relational query languages like SQL can be used to specify relational queries, a data mining query language can be used to specify data mining tasks. A popular SQL-based data mining query language is DMQL, which contains language primitives for defining data warehouses and data marts.

Data warehouses and data marts can be defined using two language primitives, one for cube definition, and one for dimension definition.

The cube definition statement has the following syntax:

define cube <cube_name> [<dimension_list>] : <measure_list>

The dimension definition statement has the following syntax:

define dimension <dimension_name> as (<attribute_or_subdimension_list>)
Data Mining – On What Kind of Data?

When data mining is applied to relational databases, one can go further ahead of simple querying by searching for trends or data patterns. For example, data mining systems may analyze customer data to predict the credit risk of new customers based on their income, age, and previous credit information.13 Relational databases are one of the most popularly available and rich information repositories, and thus they are a major data form in our study of data mining.

I, too, have developed an online application catering to ticketing and reservation for an airliner company. It can be viewed at http://members.lycos.co.uk/eddcosta. The open-source MySQL database software is the back-end responsible for maintaining the Relational Database. The front-end web-interface has been developed using PHP (Hypertext Preprocessor) and it allows for easy access, insertion, updation, and deletion of data into the MySQL database.

Theoretical Concepts Involved
When it comes to mining types of data, there are 6 such types/branches of study:

1. Multi-dimensional Analysis and Descriptive Mining of Complex Data Objects

2. Mining Spatial Databases

3. Mining Multimedia Databases

4. Mining Time-Series and Sequence Data

5. Mining Text Databases

6. Mining the World Wide Web

Of the above, this project would focus on the techniques of mining Time-Series and Sequence Data.
Time Series
“A time series is a set of statistical observations arranged in chronological order.”

- Morris Hamburg

What is Trend Measurement?
Given any time series, the first step towards forecasting is to determine and present the direction which it takes - i.e. is it growing or declining? This is trend measurement.14
Method of Moving Averages (MA) to Determine Trend18
In determining trend by the method of moving averages, the average for a number years (or months or weeks) is secured, and this average is taken as the normal or trend value for the unit of time falling at the middle of the period covered in the calculation of the average.

The effect of averaging is to give a smoother curve (when drawing the trend line), and lessening the influence of the fluctuations that pull the time-series’ figures away from the general trend.

When applying the MA method, it is necessary to select a period for the moving average, such as a 3-yearly moving average, 5-yearly moving average, etc.

Criteria for the selection of Period for the Moving Average:-
The period of the moving average is to be decided in the light of the length of the cycle between any 2 consecutive peaks on the actual trend line (i.e. the trend line formed by plotting the actual data values of the time series). Once the cycle length is known, the ‘ideal’ period for the Moving Average is given by:7
Ideal Period/Length of Moving Average = (Cycle Length)/2 + 1

Components of Time Series

It is customary to classify the fluctuations of a time series into 4 basic types of variations which, superimposed and acting in concert, account for changes in the series over a period of time. These 4 types of patterns, movements, or, as they are often called, components or elements of a time series, are:19
1. Secular Trend,

2. Seasonal Variation,

3. Cyclical variation, and

4. Irregular Variation.

It may be noted that any or all of these components may be present in any particular time series.

[image: image7.jpg]SAdVAdA
€002 No_ON S_ON oo_om 00_3 wm_a 8_3 oa_a mm_a wo_a mo_a

Nm_@ 1

1661
I

om_o 1

0¢

SUOIJBLIB A [BOI[OK) .
pUdL], IB[NO9S .
eje([euISQ .

I

i

0¢

'V .mk.] Ul B[0D) BI0) JO JeS :/ AN

SHTLLOA NOITTIN

The adjacent graph shown in figure 7 gives the sale of Coca Cola in the U. S. A. for the years 1989-2003:5, 20
The original data in this graph is represented by the red-colored curve. The general movement persisting over a long period of time, represented by the green-colored diagonal line drawn through the irregular curve, is called secular trend.

Next, if we study the original data curve year-by-year, we see that in each year the curve starts with a low figure and reaches a peak about the middle of the year and then decreases again. This type of fluctuation, which completes the whole sequence of changes within the span of a year and has about the same pattern year-after-year, is called a seasonal variation.

Furthermore, looking at the blue-colored broken curve superimposed on the original irregular red-curve, we find pronounced fluctuations moving up and down every few years throughout the length of the time series. These are known as business cycles or cyclical fluctuations. They are so called because they comprise a series of repeated sequences just as a wheel goes round and round.

Finally, the little saw-tooth irregularities on the original red-curve represent what are referred to as irregular movements.

In traditional or classical time series analysis, it is ordinarily assumed that there is a multiplicative relationship between these 4 components, that is, it is assumed that any particular value in a time series is the product of factors that can be attributed to the various components.

Symbolically,20

Y = T x S x C x I

where,

Y: denotes the result of the 4 elements,

T: Trend,

S: Seasonal Component,

C: Cyclical Component, and

I: Irregular Component.

Seasonal Variations

Seasonal variations are those periodic movements in business activity which occur regularly every year and their origin in the nature of the year itself. Since these variations repeat during a period of 12 months they can be predicted fairly accurately. Nearly every type of business activity is susceptible to seasonal influence to a greater or lesser degree and as such these variations are regarded as normal phenomenon recurring every year. Although the word ‘seasonal’ seems to imply a connection with the seasons of the year, the term is meant to include any kind of variation which is of periodic nature and whose repeating cycles are of relatively short duration.

Although the amplitude of seasonal variations may vary, their period is fixed – being one year. The factors that cause seasonal variations are:

i. Climate and weather conditions, and

ii. Customs, traditions, and habits.

Measurement of Seasonal Variations20
Most of the phenomena in economics and business show seasonal patterns. For example, if we observe the sales of a bookseller we find that for the quarter April – June (when most of the students purchase books) sales are maximum. If we know by how much the sales of this quarter are usually above or below the previous quarter for seasonal variations, we shall be able to answer a very basic question, namely, was this due to an underlying upward tendency or simply because this quarter is usually seasonally higher than the previous quarter.

To obtain a statistical description of a pattern of seasonal variation it will be desirable to first free the data from the effects of trend, cycles, and irregular variation. Once these other components have been eliminated, we can calculate, in index form, a measure of seasonal variations which is usually referred to as a seasonal index. Thus, the measures of seasonal variation are called seasonal indices (in %age).

For example, if a seasonal index for January is 75, this means that for the month of January, sales, orders, purchases, or whatever our data happens to be, are 75% of those of the average month.

Uses of Seasonal Index
A seasonal index may be used for economic forecasting and managerial control. Management usually benefits from examining the seasonal patterns of its own business – patterns that directly influence its employment, production, purchase, sales, and inventory policies.

For example: If a firm expects to sell Rs. 36,000,000.00 worth of goods the forthcoming year, average monthly sales of Rs. 3,000,000.00 are anticipated . If, however, the volume of sales is subject to seasonal fluctuation, the actual monthly values will deviate significantly from this average. Should the seasonal index for December be 120, the firm can expect sales of Rs. 3,600,000.00 during that month; in comparison, an index of 90 for May would lead them to anticipate sales of only Rs. 2,700,000.00. Possible solutions for seasonality available to individual firms are numerous. By using special pricing and advertising policies, a producer confronted with a strong seasonal demand for his product may try to stabilize sales by encouraging off-season consumption.

Ratio-to-Moving Average Method of Measuring Seasonal Variations20
The ratio-to-moving average method, also known as percentages of moving average method, is the most widely used method of measuring seasonal variations.

Refer appendix A for an illustrative example on how to calculate seasonal indices using the ratio-to-moving average method.

Inferences drawn:

As can be seen from the solution of the problem in appendix A, the final table thus obtained gives us the seasonal indices. The interpretation of this index is very simple. Typical April sales are 84.03% of those of the average month, and so on.

Exponentially Smoothed Weighted Moving Average (ESWMA)

The simple moving averages method, we have discussed so far, gives equal significance to all the days in the average. However, this need not be so. If one thinks about it, it actually does not make much sense, especially if one is interested in using a longer-term MA to smoothen-out random bumps in the trend. Assuming one to be using a 20-day moving average, why should the data almost 3 weeks ago be considered equally relevant to the data recorded today morning?

Various forms of ‘weighted’ moving averages have been developed to address this objection. One such technique is the ‘Exponentially Smoothed Weighted Moving Average’ (or ESWMA, for short).

Exponential Smoothing gives maximum significance to the most recent data and decreasing significance to data which pertains to older instances of time. The weight factors in an exponentially smoothed MA are successive powers of a number called the ‘smoothing constant’. A smoothing constant less than 1 weighs recent data more heavily, with the bias towards the most recent measurements increasing as the smoothing constant decreases towards 0. If the smoothing constant exceeds 1, older data are weighed more heavily that recent measurements.

The formula for ESWMA is given by:4, 16
E = (c1. t1 + c2.t2 + ……………… + cn.tn)/n

where,

c: Smoothing Constant (and, for all practical purposes, 0<c<1)

t1, t2, ……., tn : Time Series data – with t1 being the most recent data

n: period of the MA, and

E: ESWMA
[image: image8.jpg]uonedrddy VINMSH JO 104SudaIs (g 2In3I|

ajndwor

GBZFL'9EZ| =% £82r12'18)

=1

‘8EFER00L 'S LE 63¥086YSESZECE ¥ ILE 2906ESC0L0| =B
3'€CL 60LZ1665102852°EC | #86802923866% L LEL

abelaay Buiaop pajybiasm payjoows djienuauods 3

al =2
660
juejsuoy) buiyjoowg aberaay BuAoy

=U

0¢
azi1g dnoiy) abeiaay Bulaop

eje
LLPOLGLLSELBYLBRLGEL IZLBZLEELBLLZLL ol

(1) sawag au |

djaH

vl

Implementation into Software Application

Using C++ and Windows MFC Programming (refer appendix C for relevant program code), a software application has been developed to deduce the trend values using the ESWMA technique, and further plotting these values on a 2-dimensional plane (using OpenGL) to obtain the ‘Exponentially Smoothed Trend Curve’ (refer figure 8 for screenshot of the application).

Refer appendix B for the C++ program code used to generate the ESWMA values.

Manual for ESWMA-based Trend Curve fitter application

Following are the instructions on how to use the software application developed for calculating trend values using the Exponentially Smoothed Weighted Moving Average:

Step 1:
Assuming ‘D’ is the CD-drive letter, browse to the following folder containing the ESWMA-based Trend Curve fitter application:

D:\MS_Project-Edward\SoftwareApplication

Step 2:
Open the application named ‘ESWMA.exe’.

Step 3: In the application’s dialog box that appears enter the values of the actual time-series in the ‘Time Series Data’ textbox.

Step 4:
Next, in the ‘Moving Average Group Size’ textbox enter the time-period on the basis of which one intends to calculate the moving averages for the time series data entered in the previous step.

Step 5:
Now that we have specified the moving average period, we next need to specify to the application a value between 0 & 1.

Step 6:
Finally, click on the ‘Compute’ command button to obtain the calculated ESWMA-based trend values in the ‘Exponentially Smoothed Weighted Moving Average’ label box. Simultaneously, a graphical representation of the actual time series data along with the trend values is depicted in the left-hand-side pane.

Proposed improvements in Current Version of Forecasting Tool
I need to use the information obtained from arriving at the ESWMA-based trend values for forecasting.

To assist in the same, I am presently studying the Partial Auto-Correlation Function (PACF), and Box-Jenkins Auto-Regressive Integrated Moving Average (ARIMA) models for forecasting.

Conclusion

Data mining is an evolving technology going through continuous modifications and enhancements. Mining tasks and techniques use algorithms that are many a times refined versions of tested older algorithms. Though mining technologies are still in their infancies, yet they are increasingly being used in different business organizations to increase business efficiency and efficacy.

Before data mining develops into a trusted discipline, there are some issues which need to be addressed. Some such issues that need to be redressed are as follows:

· issues related to security and society,

· issues related to user interface,

· issues related to data mining methods,

· issues related to performance, and

· issues related to data source.

The popularity and growth of data mining technology will depend upon the successful handling of these issues.

References

WEBSITES

1. The Data Mine: www.the-data-mine.com
2. KDnuggets - Data Mining, Web Mining, and Knowledge Discovery Guide: www.kdnuggets.com
3. Data Mining Technologies, Inc.: www.data-mine.com
4. Fourmilab Switzerland: www.fourmilab.ch/hackdiet

5. Two Crows Corporation: www.twocrows.com/about-dm.htm

6. UCLA Anderson School of Management: www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm
7. Equis International: www.equis.com/Education/TAAZ/?page=74
8. SAS…The Power to Know: www.sas.com

9. Eddie Bauer – EST. 1920: www.eddiebauer.com

BOOKS

10. HAN, JIAWEI, & KAMBER, MICHELINE. Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2001

11. HAND, DAVID, MANNILA, HEIKKI, & SMYTH, PADHRAIC. Principles of Data Mining, MIT Press, 2001

12. BOX, GEORGE E. P., JENKINS, GWILYM M., REINSEL, GREGORY C. Time Series Analysis: Forecasting and Control - 3rd ed., Prentice-Hall International, Inc., 1994

13. PANKRATZ, ALAN. Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, John Wiley & Sons, 1983

14. GERSHENFELD, NEIL. The Nature of Mathematical Modeling, Cambridge University Press, 2002

15. LAUDON, KENNETH C., & LAUDON, JANE P. Management Information Systems: Managing the Digital Firm - 8th ed.), Pearson Education, 2004
16. WALKER, JOHN. The Hacker’s Diet, Autodesk, 1992

17. HANKE, JOHN E., WICHERN, DEAN W., & REITSCH, ARTHUR G. Business Forecasting, Pearson Education, Inc., 2001

18. LEVIN, RICHARD I., & RUBIN, DAVID S. Statistics for Management, Pearson Education, Inc., 1998

19. SPIEGEL, MURRAY R., STEPHENS, LARRY J., & SCHAUM. Schaum’s Outline of Statistics, McGraw-Hill Trade, 1998

20. GUPTA, S. P. Statistical Methods, Sultan Chand & Sons, 1994

21. BPB EDITORIAL BOARD. Data Mining, BPB Publications, 2004

PAPERS

22. EDELSTEIN, HERB. Building Profitable Customer Relationships with Data Mining, Two Crows Corporation (http://www.twocrows.com/crm-dm.pdf)

23. EDELSTEIN, HERB. Mining Large Databases: A Case Study, Two Crows Corporation (http://www.twocrows.com/largedb.pdf)

APPENDIX A

Illustrative example:

Apply ratio-to-moving average method to calculate seasonal indices from the following data:

Year and Month Sales (in ’000 units)
 Year and Month Sales (in ’000 units)

1996
1997

Jan
10
Jan
11

Feb
12
Feb
11

Mar
13
Mar
12

Apr
15
Apr
13

May
16
May
14

Jun
16
Jun
14

Jul
17
Jul
15

Aug
18
Aug
15

Sep
18
Sep
15

Oct
19
Oct
16

Nov
22
Nov
18

Dec
22
Dec
20

1998
1999

Jan
10
Jan
12

Feb
12
Feb
13

Mar
11
Mar
13

Apr
12
Apr
15

May
13
May
16

Jun
15
Jun
18

Jul
15
Jul
20

Aug
17
Aug
20

Sep
18
Sep
21

Oct
20
Oct
22

Nov
22
Nov
24

Dec
24
Dec
25

Solution:

Month
Sales
12-month Centered

Percentage of

Moving Average

Centered 12-month MA

1996

Jan
10

Feb
12

Mar
13

Apr
15

May
16

Jun
16

Jul
17

16.54

102.8

Aug
18

16.54

108.8

Sep
18

16.46

109.4

Oct
19

16.33

116.3

Nov
22

16.16

136.1

Dec
22

16.00

137.5

1997

Jan
11

15.83

69.5

Feb
11

15.62

70.4

Mar
12

15.37

78.1

Apr
13

15.12

86.0

May
14

14.83

94.4

Jun
14

14.59

95.9

Jul
15

14.46

103.7

Aug
15

14.46

103.7

Sep
15

14.46

103.7

Oct
16

14.37

107.6

Nov
18

13.79

126.0

Dec
20

14.29

140.0

1998

Jan
10

14.33

70.0

Feb
12

14.41

83.3

Mar
11

14.62

75.2

Apr
12

14.91

80.5

May
13

15.25

85.2

Jun
15

15.58

90.6

Jul
15

15.83

95.4

Aug
17

15.96

106.5

Sep
18

16.08

111.9

Oct
20

16.29

122.8

Nov
22

16.54

133.0

Dec
24

16.79

142.9

1999

Jan
12

17.12

70.1

Feb
13

17.45

74.5

Mar
13

17.70

73.4

Apr
15

17.91

83.7

May
16

18.08

88.5

Jun
18

18.21

98.8

Jul
20

Aug
20

Sep
21

Oct
22

Nov
24

Dec
25

COMPUTATION OF SEASONAL INDICES

	Month
	1996
	1997
	1998
	1999
	Modified Mean/

Median
	Seasonal

Index

	Jan
	
	69.5
	70.0
	70.1
	70.1
	 70.28

	Feb
	
	70.4
	83.3
	74.5
	74.5
	 74.80

	Mar
	
	78.1
	75.2
	73.4
	75.2
	 75.50

	Apr
	
	86.0
	80.5
	83.7
	83.7
	 84.03

	May
	
	94.4
	85.2
	88.5
	88.5
	 88.85

	Jun
	
	95.9
	90.6
	98.8
	95.9
	 96.28

	Jul
	102.8
	103.7
	95.4
	
	102.8
	 103.20

	Aug
	108.8
	103.7
	106.5
	
	106.5
	 106.92

	Sep
	109.4
	103.7
	111.9
	
	109.4
	 109.84

	Oct
	116.3
	107.6
	122.8
	
	116.3
	 116.76

	Nov
	136.1
	126.0
	133.0
	
	133.0
	 133.53

	Dec
	137.5
	140.0
	142.9
	
	140.0
	 140.56

	
	
	
	
	
	1,195.8
	1,200.55†

†: The difference is due to approximation.
APPENDIX B

/***

Exponentially Smoothed Weighted Moving Average

for Analysis of Trends in Time Series Data **/

#include <iostream>

#include <fstream>

#include <string>

#include <vector>

#include <cmath>

using namespace std;

ifstream infile("Data.txt");

ofstream outfile("ESWMA.txt");

vector<float> ESWMA(vector<float> v, int n, float c);

int main()

{

 int n=3; //Number of terms to average

 float c=0.5; //Smoothing Constant

 vector<float> v, w;

 float x;

 while(infile>>x) v.push_back(x);

 w=ESWMA(v,n,c);

 for(int i=0; i<w.size(); i++) outfile<<w[i]<<endl;

 system("PAUSE");

 return 0;

}

vector<float> ESWMA(vector<float> v, int n, float c)

{

 vector<float> w;

 int i=n;

 while(i<=v.size())

 {

 float sum=0;

 int j=0;

 for(int k=i; k>i-n; k--)

 {

 sum+=pow(c,j)*v[k-1];

 j++;

 }

 float avg=sum/float(n);

 w.push_back(avg);

 i++;

 }

 return w;

}

APPENDIX C

// ESWMA.cpp : Defines the class behaviors for the application.

//

#include "stdafx.h"

#include "ESWMA.h"

#include "ESWMADlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

///

// CESWMAApp

BEGIN_MESSAGE_MAP(CESWMAApp, CWinApp)

//{{AFX_MSG_MAP(CESWMAApp)

// NOTE - the ClassWizard will add and remove mapping macros here.

// DO NOT EDIT what you see in these blocks of generated code!

//}}AFX_MSG

ON_COMMAND(ID_HELP, CWinApp::OnHelp)

END_MESSAGE_MAP()

///

// CESWMAApp construction

CESWMAApp::CESWMAApp()

{

// TODO: add construction code here,

// Place all significant initialization in InitInstance

}

///

// The one and only CESWMAApp object

CESWMAApp theApp;

///

// CESWMAApp initialization

BOOL CESWMAApp::InitInstance()

{

AfxEnableControlContainer();

// Standard initialization

// If you are not using these features and wish to reduce the size

// of your final executable, you should remove from the following

// the specific initialization routines you do not need.

#ifdef _AFXDLL

Enable3dControls();

// Call this when using MFC in a shared DLL

#else

Enable3dControlsStatic();
// Call this when linking to MFC statically

#endif

CESWMADlg dlg;

m_pMainWnd = &dlg;

int nResponse = dlg.DoModal();

if (nResponse == IDOK)

{

// TODO: Place code here to handle when the dialog is

// dismissed with OK

}

else if (nResponse == IDCANCEL)

{

// TODO: Place code here to handle when the dialog is

// dismissed with Cancel

}

// Since the dialog has been closed, return FALSE so that we exit the

// application, rather than start the application's message pump.

return FALSE;

}

// ESWMADlg.cpp : implementation file

//

#include "stdafx.h"

#include "ESWMA.h"

#include "ESWMADlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

///

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{

public:

CAboutDlg();

// Dialog Data

//{{AFX_DATA(CAboutDlg)

enum { IDD = IDD_ABOUTBOX };

//}}AFX_DATA

// ClassWizard generated virtual function overrides

//{{AFX_VIRTUAL(CAboutDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

//}}AFX_VIRTUAL

// Implementation

protected:

//{{AFX_MSG(CAboutDlg)

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)

{

//{{AFX_DATA_INIT(CAboutDlg)

//}}AFX_DATA_INIT

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)

{

CDialog::DoDataExchange(pDX);

//{{AFX_DATA_MAP(CAboutDlg)

//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)

//{{AFX_MSG_MAP(CAboutDlg)

// No message handlers

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

///

// CESWMADlg dialog

CESWMADlg::CESWMADlg(CWnd* pParent /*=NULL*/)

: CDialog(CESWMADlg::IDD, pParent)

{

//{{AFX_DATA_INIT(CESWMADlg)

// NOTE: the ClassWizard will add member initialization here

//}}AFX_DATA_INIT

// Note that LoadIcon does not require a subsequent DestroyIcon in Win32

m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

 m_pDisplay = new COpenGL;

}

void CESWMADlg::DoDataExchange(CDataExchange* pDX)

{

CDialog::DoDataExchange(pDX);

//{{AFX_DATA_MAP(CESWMADlg)

DDX_Control(pDX, IDC_EDIT6, m_edit6);

DDX_Control(pDX, IDC_EDIT5, m_edit5);

DDX_Control(pDX, IDC_EDIT4, m_edit4);

DDX_Control(pDX, IDC_EDIT3, m_edit3);

DDX_Control(pDX, IDC_EDIT2, m_edit2);

DDX_Control(pDX, IDC_EDIT1, m_edit1);

//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CESWMADlg, CDialog)

//{{AFX_MSG_MAP(CESWMADlg)

ON_WM_SYSCOMMAND()

ON_WM_PAINT()

ON_WM_QUERYDRAGICON()

ON_BN_CLICKED(IDC_BUTTON1, OnButton1)

ON_WM_MOUSEMOVE()

ON_COMMAND(ID_HELP_EXAMPLEINTERNATIONALAIRLINEPASSENGERSMONTHLYTOTALSINTHOUSANDSJAN49DEC60SOURCEBOXANDJENKINS1976, OnHelpExample)

ON_COMMAND(ID_HELP_ABOUT, OnHelpAbout)

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

///

// CESWMADlg message handlers

BOOL CESWMADlg::OnInitDialog()

{

CDialog::OnInitDialog();

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.

ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);

ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);

if (pSysMenu != NULL)

{

CString strAboutMenu;

strAboutMenu.LoadString(IDS_ABOUTBOX);

if (!strAboutMenu.IsEmpty())

{

pSysMenu->AppendMenu(MF_SEPARATOR);

pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

}

}

// Set the icon for this dialog. The framework does this automatically

// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE);

// Set big icon

SetIcon(m_hIcon, FALSE);

// Set small icon

// TODO: Add extra initialization here

CRect rect(6, 6, 300, 300);

m_pDisplay->Create(NULL, //CWnd default

NULL, //has no name

WS_CHILD|WS_CLIPSIBLINGS|WS_CLIPCHILDREN|WS_VISIBLE,

rect,

this, //this is the parent

0); //this should really be a different number... check resource.h

return TRUE; // return TRUE unless you set the focus to a control

}

void CESWMADlg::OnSysCommand(UINT nID, LPARAM lParam)

{

if ((nID & 0xFFF0) == IDM_ABOUTBOX)

{

CAboutDlg dlgAbout;

dlgAbout.DoModal();

}

else

{

CDialog::OnSysCommand(nID, lParam);

}

}

// If you add a minimize button to your dialog, you will need the code below

// to draw the icon. For MFC applications using the document/view model,

// this is automatically done for you by the framework.

void CESWMADlg::OnPaint()

{

if (IsIconic())

{

CPaintDC dc(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);

int cyIcon = GetSystemMetrics(SM_CYICON);

CRect rect;

GetClientRect(&rect);

int x = (rect.Width() - cxIcon + 1) / 2;

int y = (rect.Height() - cyIcon + 1) / 2;

// Draw the icon

dc.DrawIcon(x, y, m_hIcon);

}

else

{

CDialog::OnPaint();

}

}

// The system calls this to obtain the cursor to display while the user drags

// the minimized window.

HCURSOR CESWMADlg::OnQueryDragIcon()

{

return (HCURSOR) m_hIcon;

}

void CESWMADlg::OnButton1()

{

// TODO: Add your control notification handler code here

m_edit4.SetWindowText("");

vector<float> v;

CString s; m_edit1.GetWindowText(s);s.TrimLeft(' '); if(s.IsEmpty()) return;

CString ns;m_edit2.GetWindowText(ns);ns.TrimLeft(' '); if(ns.IsEmpty()) return; int n=atoi(ns);

CString cs;m_edit3.GetWindowText(cs);cs.TrimLeft(' '); if(cs.IsEmpty()) return; float c=atof(cs);

if(n<1){ AfxMessageBox("n should be an integer greater than or equal to 1", MB_OK | MB_ICONINFORMATION, 0); return;}

if(c<=0 || c>1){ AfxMessageBox("c should be a positive real number less than or equal to 1", MB_OK | MB_ICONINFORMATION, 0); return;}

int i=0;

while(i<s.GetLength())

{

while(i<s.GetLength() && s[i]==' ') i++;

CString t;

while(i<s.GetLength() && s[i]!=' ')

{

t+=s[i];

i++;

}

v.push_back(atof(t));

while(i<s.GetLength() && s[i]==' ') i++;

}

vector<float> temp=v;

if(n>v.size()){ AfxMessageBox("n should be an integer less than or equal to the size of the Time Series data", MB_OK | MB_ICONINFORMATION, 0); return;}

sort(temp.begin(),temp.end());

vector<float> w=ESWMA(v,n,c);

m_pDisplay->Refresh(v,w,temp[0],temp[temp.size()-1]);

CString es;

for(i=0; i<w.size(); i++)

{

float x=w[i];

CString val;

val.GetBuffer(1000);

val=gcvt(x, 100, val.GetBuffer(1000));

es+=val;

es+=' ';

 val.ReleaseBuffer(-1);

}

m_edit4.SetWindowText(es);

}

vector<float> CESWMADlg::ESWMA(vector<float> v, int n, float c)

{

 vector<float> w;

 int i=n;

 while(i<=v.size())

 {

 float sum=0;

 int j=0;

 for(int k=i; k>i-n; k--)

 {

 sum+=pow(c,j)*v[k-1];

 j++;

 }

 float avg=sum/float(n);

 w.push_back(avg);

 i++;

 }

 return w;

}

void CESWMADlg::OnMouseMove(UINT nFlags, CPoint point)

{

// TODO: Add your message handler code here and/or call default

m_edit5.SetWindowText("");

m_edit6.SetWindowText("");

CDialog::OnMouseMove(nFlags, point);

}

void CESWMADlg::OnHelpExample()

{

// TODO: Add your command handler code here

m_edit1.SetWindowText("112 118 132 129 121 135 148 148 136 119 104 118 115 126 141 135 125 149 170 170 158 133 114 140 145 150 178 163 172 178 199 199 184 162 146 166 171 180 193 181 183 218 230 242 209 191 172 194 196 196 236 235 229 243 264 272 237 211 180 201 204 188 235 227 234 264 302 293 259 229 203 229 242 233 267 269 270 315 364 347 312 274 237 278 284 277 317 313 318 374 413 405 355 306 271 306 315 301 356 348 355 422 465 467 404 347 305 336 340 318 362 348 363 435 491 505 404 359 310 337 360 342 406 396 420 472 548 559 463 407 362 405 417 391 419 461 472 535 622 606 508 461 390 432");

m_edit2.SetWindowText("20");

m_edit3.SetWindowText("0.99");

OnButton1();

}

void CESWMADlg::OnHelpAbout()

{

// TODO: Add your command handler code here

CAboutDlg New;

New.DoModal();

}

// OpenGL.cpp : implementation file

//

#include "stdafx.h"

#include "ESWMA.h"

#include "ESWMADlg.h"

#include "OpenGL.h"

#include <gl/gl.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

float yymin, yymax, ttmax;

///

// COpenGL

COpenGL::COpenGL()

{

}

COpenGL::~COpenGL()

{

}

BEGIN_MESSAGE_MAP(COpenGL, CWnd)

//{{AFX_MSG_MAP(COpenGL)

ON_WM_CREATE()

ON_WM_PAINT()

ON_WM_MOUSEMOVE()

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

//**

int MySetPixelFormat(HDC hdc)

{

PIXELFORMATDESCRIPTOR pfd = {

 sizeof(PIXELFORMATDESCRIPTOR), // size of this pfd

 1, // version number

 PFD_DRAW_TO_WINDOW | // support window

 PFD_SUPPORT_OPENGL | // support OpenGL

 PFD_DOUBLEBUFFER, // double buffered

 PFD_TYPE_RGBA, // RGBA type

 24, // 24-bit color depth

 0, 0, 0, 0, 0, 0, // color bits ignored

 0, // no alpha buffer

 0, // shift bit ignored

 0, // no accumulation buffer

 0, 0, 0, 0, // accum bits ignored

 32, // 32-bit z-buffer

 0, // no stencil buffer

 0, // no auxiliary buffer

 PFD_MAIN_PLANE, // main layer

 0, // reserved

 0, 0, 0 // layer masks ignored

};

int iPixelFormat;

// get the device context's best, available pixel format match

if((iPixelFormat = ChoosePixelFormat(hdc, &pfd)) == 0)

{

MessageBox(NULL, "ChoosePixelFormat Failed", NULL, MB_OK);

return 0;

}

 // make that match the device context's current pixel format

if(SetPixelFormat(hdc, iPixelFormat, &pfd) == FALSE)

{

MessageBox(NULL, "SetPixelFormat Failed", NULL, MB_OK);

return 0;

}

return 1;

}

///

// COpenGL message handlers

int COpenGL::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

if (CWnd::OnCreate(lpCreateStruct) == -1)

return -1;

// TODO: Add your specialized creation code here

MySetPixelFormat(::GetDC(m_hWnd));

return 0;

}

void COpenGL::OnPaint()

{

CPaintDC dc(this); // device context for painting

// TODO: Add your message handler code here

HDC hdc = ::GetDC(m_hWnd);

HGLRC hglrc;

// TODO: Add your message handler code here

if (hglrc = wglCreateContext(hdc))

{

 // try to make it the thread's current rendering context

 if(wglMakeCurrent(hdc, hglrc))

{

//render here

glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glEnable(GL_DEPTH_TEST);

 glDisable(GL_CULL_FACE);

glPushMatrix();

glPopMatrix();

SwapBuffers(hdc);

wglMakeCurrent(NULL, NULL) ;

}

 }

::ReleaseDC (m_hWnd, hdc) ;

wglDeleteContext(hglrc);

// Do not call CWnd::OnPaint() for painting messages

}

void COpenGL::Refresh(vector<float> v, vector<float> w,float ymin, float ymax)

{

CPaintDC dc(this); // device context for painting

// TODO: Add your message handler code here

HDC hdc = ::GetDC(m_hWnd);

HGLRC hglrc;

yymin=ymin; yymax=ymax; ttmax=float(v.size()-1);

if (hglrc = wglCreateContext(hdc))

{

 // try to make it the thread's current rendering context

 if(wglMakeCurrent(hdc, hglrc))

{

//render here

glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glEnable(GL_DEPTH_TEST);

 glDisable(GL_CULL_FACE);

glPushMatrix();

//glScalef(0.70f,0.70f,1.0f);

glBegin(GL_LINES);

for(int i=0; i<v.size()-1; i++)

{

 glColor3f(1,0,0);

 glVertex2f(-1+float(i)*2/float(v.size()-1),-1+float(v[i]-ymin)*2/(ymax-ymin));

 glVertex2f(-1+float(i+1)*2/float(v.size()-1),-1+float(v[i+1]-ymin)*2/(ymax-ymin));

}

for(i=0; i<w.size()-1; i++)

{

 glColor3f(0,1,0);

 glVertex2f(-1+float(i)*2/float(w.size()-1),-1+float(w[i]-ymin)*2/(ymax-ymin));

 glVertex2f(-1+float(i+1)*2/float(w.size()-1),-1+float(w[i+1]-ymin)*2/(ymax-ymin));

}

 glEnd();

glPopMatrix();

SwapBuffers(hdc);

wglMakeCurrent(NULL, NULL) ;

}

 }

::ReleaseDC (m_hWnd, hdc) ;

wglDeleteContext(hglrc);

}

void COpenGL::OnMouseMove(UINT nFlags, CPoint point)

{

// TODO: Add your message handler code here and/or call default

int ppx=point.x;

int ppy=point.y;

 float pxmin, pxmax, pymin, pymax;

pxmin=0;

pxmax=ttmax;

pymin=yymin;

pymax=yymax;

float pvax1=pxmin+(pxmax-pxmin)*(float(ppx)-0)/294.0;

float pvax2=pymin+(pymax-pymin)*(float(294-ppy)-0)/294.0;

CString csppx;
gcvt(pvax1, 8, csppx.GetBuffer(1000));

CString csppy; gcvt(pvax2, 8, csppy.GetBuffer(1000));

((CESWMADlg*)GetParent())->m_edit5.SetWindowText(csppx);

((CESWMADlg*)GetParent())->m_edit6.SetWindowText(csppy);

 csppx.ReleaseBuffer(-1);

csppy.ReleaseBuffer(-1);

CWnd::OnMouseMove(nFlags, point);

}

NOTES

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Data Collection and Database Creation

(1960s and earlier)

Primitive file processing

Database Management Systems

(1970s – early 1980s)

Hierarchical and network database systems

Relational database systems

Data modeling tools: entity-relationship model, etc.

Indexing and data organization techniques:

B+ -tree, hashing, etc.

Query languages: SQL, etc.

User interfaces, forms and reports

Query processing and query optimization

Transaction management: recovery,

concurrency control, etc.

On-Line Transaction Processing (OLTP)

Advanced Databases Systems

(mid-1980s – present)

Advanced data models: extended relational,

	object-oriented,

	object-relational, deductive

-	Application-oriented: spatial, temporal, multimedia, active, scientific, knowledge bases

Web-based Databases Systems

(1990s – present)

-	XML-based database systems

-	Web mining

Data Warehousing and Data Mining

(late 1980s – present)

-	Data warehouse and OLAP technology

-	Data mining and knowledge discovery

New Generation of Integrated Information Systems

(2000 – …)

Figure 1: The evolution of database technology and data mining.

Figure 3: Architecture of a typical data mining system.

Filtering

Knowledge

base

Data

warehouse

Database

Database or

data warehouse server

Data mining engine

Pattern evaluation

Graphical User Interface

Data cleaning

Data Integration

PAGE
- 11 of 90 -

